Home » Further Maths Unit 3 & 4 » A1 - Data Analysis » 4.5 Analysis of De-seasonalised Data

4.5 Analysis of De-seasonalised Data

Linear Regression of Ordinary Time Series Data

  • As with any other type of bivariate data, it is often useful to apply linear regression to time series data in order to predict values for which we have no data.
  • For time series data, time is always the explanatory variable.
  • Unprocessed data with seasonality is generally poorly modelled by a linear fit.

Note: if you cannot remember how to construct and interpret a linear fit, revise notes for 3.1 Least Squares Linear Regression and 3.2 Modelling Linear Associations.

Re-seasonalising Data

This content is for members only. Unlock the content by signing up for a membership level - quick and easy!
Log InSign Up