#### Deducing Antiderivative Function Graphs

Method 1

- Similar logic follows (simply the reverse of the former 2.1 Graphs of Derivative Functions). To summarise:

i) The sign of f^{\prime}(x) ( >0 or <0) decides the sloping (upward or downward) of f(x).

ii) Any x-intercept of f^{\prime}(x) (i.e. f^{\prime}(x)=0) shows the stationary point of f(x). If f^{\prime}(x) changes sign before and after passing the x-axis, then it is a turning point for f(x). If not, it is just a stationary point.