Home » ACMGM056

ACMGM056

3.2 Modelling Linear Associations

Identifying Explanatory and Response Variables

  • It is important to correctly select the explanatory and response variables when using regression, or the relationship will be incorrect.
  • The explanatory variable is the variable which is used to explain or predict the response variable.
  • In a conventional x-y dataset, the x variable is the explanatory variable and y is the response variable.

Fitting Least Squares Models

  • Start by identifying the explanatory and response variables.
Read More »3.2 Modelling Linear Associations

2.5 Relationships between two Numerical Variables

Guidelines to Analysing Numerical Associations

  • Begin with context: what does the data represent?
  • Identify the explanatory and response variables.
  • Assess the form of the association: is it linear, non-linear or is there no association.
  • If it is linear, assess the strength (strong, moderate or weak). Ideally, do this using the Pearson’s correlation coefficient (detailed in 2.6 Pearson’s Correlation Coefficient), however if the raw data is not available, a qualitative assessment will suffice.
Read More »2.5 Relationships between two Numerical Variables