Home » FM Binary Matrix

# FM Binary Matrix

## 1.7 Matrix Applications: Dominance Matrices

### Dominance Matrices

• A dominance matrix is a binary matrix which has individuals listed along the rows and columns. A 1 element indicates the individual corresponding to the row is “dominant to” or “beat” the individual corresponding to the column. A 0 element indicates this is not the case.
• This type of matrix is useful when modelling systems such as round robin competitions, where multiple people play against each other in rounds, with each round producing a winner.
• This type of matrix is also known as a one-step dominance matrix.
Read More »1.7 Matrix Applications: Dominance Matrices

## 1.5 Binary and Permutation Matrices

Applications of Binary Matrices Note: if you cannot remember what a binary matrix is, revise notes for 1.1 Matrices: Definition and Unique Cases. Binary matrices… Read More »1.5 Binary and Permutation Matrices

## 1.1 Matrices: Definition and Unique Cases

### Matrices

• Matrices provide an alternative to ordinary linear algebra which allows us to deal with multi-dimensional data in a more concise way.
• They are similar in form to a table, with a number of entries arranged into rows and columns.
• The size of a matrix is expressed in the form rows x columns (i.e. the number of rows followed by the number of columns, with a cross separating them).
• We can refer to a specific element in a matrix using the name of the matrix, with a subscript listing the row and column corresponding to the element in question e.g. for a matrix; A, the element in the 2nd row and 1st column is denoted by A_{2,1}
Read More »1.1 Matrices: Definition and Unique Cases