A+ » VCE » Further Maths U3 & 4 Master Notes » A1 Data Analysis » FM De-seasonalising Data

FM De-seasonalising Data

4.5 Analysis of De-seasonalised Data

Linear Regression of Ordinary Time Series Data

  • As with any other type of bivariate data, it is often useful to apply linear regression to time series data in order to predict values for which we have no data.
  • For time series data, time is always the explanatory variable.
  • Unprocessed data with seasonality is generally poorly modelled by a linear fit.

Note: if you cannot remember how to construct and interpret a linear fit, revise notes for 3.1 Least Squares Linear Regression and 3.2 Modelling Linear Associations.

Re-seasonalising Data

Read More »4.5 Analysis of De-seasonalised Data

4.4 Introduction to Seasonal Indices

Seasonal Indices

  • Seasonal indices provide a method to de-seasonalise data.
  • The seasonal index of a season/month/period/etc. compares the average value of a particular season to the average of all seasons in a cycle.
  • A seasonal index of 1 indicates the average value of the season is exactly equal to the average value of the entire cycle.
  • A seasonal index greater than 1 indicates the average value of the season is greater than that of the entire cycle (e.g. a seasonal index of 1.2 indicates the season’s average is 20% higher than the cycle’s average).
Read More »4.4 Introduction to Seasonal Indices