Home » FM No Association

FM No Association

2.6 Pearson’s Correlation Coefficient

Meaning and Calculation

  • Pearson’s correlation coefficient provides a quantitative method for determining the strength and direction of a numerical association.
  • It is denoted by a lower-case r and can be calculated using the following formula:

r=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{(n-1) s_{x} s_{y}}

Where s_{x} and s_{y} are the standard deviations of the explanatory and response variables, respectively.

Limitations of using Pearson’s Correlation Coefficient

Read More »2.6 Pearson’s Correlation Coefficient

2.5 Relationships between two Numerical Variables

Guidelines to Analysing Numerical Associations

  • Begin with context: what does the data represent?
  • Identify the explanatory and response variables.
  • Assess the form of the association: is it linear, non-linear or is there no association.
  • If it is linear, assess the strength (strong, moderate or weak). Ideally, do this using the Pearson’s correlation coefficient (detailed in 2.6 Pearson’s Correlation Coefficient), however if the raw data is not available, a qualitative assessment will suffice.
Read More »2.5 Relationships between two Numerical Variables