3.3 Logarithm Laws [Free]

The Logarithm Function’s Algebraic Properties

  • There are four properties in logarithms to consider:

i) \log_{a}{mn}=\log_{a}{m}=\log_{a}{n}

ii) log_{a}{(\frac{m}{n})}=\log_{a}{m}-\log_{a}{n}

iii) log_{a}{(m^{p})}=p\cdot{\log_{a}{m}}

In particular when p=-1, we have log_{a}{(\frac{1}{m})}=-\log_{a}{m}

Read More »3.3 Logarithm Laws [Free]

1.3 Exponential Functions [Free]

The Exponential Function

  • The exponential function is defined as follows:

y=a^x, where a \in R^+\backslash {1}.

Note:a \in R^+\backslash {1}’ means that could be any positive number, excluding 1.

Example

9=3^{2}=3 \times 3 is equivalent to log_{3}9=2.

8=16^{\frac{3}{4}}=\sqrt[4]{16^{3}}=\sqrt{\sqrt{16 \times 16 \times 16}}.

Graph & Properties

Read More »1.3 Exponential Functions [Free]