Home » VCE » Maths Methods U3 & 4 Master Notes » Symmetry Properties

Symmetry Properties

3.5 Finding Normal Distribution Probabilities

Standardised Values and Finding Normal Distribution Probabilities

  • Previously, we see that any normal distribution can be converted into a standard one via

\operatorname{Pr}(X \leq a)=\operatorname{Pr}\left(Z \leq \frac{a-\mu}{\sigma}\right) \equiv \operatorname{Pr}(Z \leq z)

where X \sim N(\mu, \sigma), and Z \sim N(0,1).

  • Such expression is useful as we convert any values into one that is in terms of standard deviation(s) away from the mean. These new values are called standardised values or z-values. In particular we have

z=\frac{x-\mu}{\sigma} \text { or standardised value }=\frac{\text { data value }-\text { mean of normal curve }}{\mathrm{s} . \mathrm{d} . \text { of the curve }}

  • Therefore, we can infer that: A positive z-value indicates that the data value it represents lies above the mean. If it is negative, then it is below the mean.
  • Knowing how to convert any normal distribution to a standard one is important as it helps us to find the probabilities of any normal distributed events.
Read More »3.5 Finding Normal Distribution Probabilities

1.6 Trigonometric Functions

Graphs of Sine and Cosine Functions

  • The graph of where -\pi<x<3\pi are plotted below. Do note that it extends beyond the drawn range.
  • There are a few observations we can make, and we can tie it back to what we have already learnt:

i) The graph repeats itself after an interval of 2\pi units. We say that the graph has a period of 2\pi, and hence is called a periodic function. Previously, we have learnt that \sin(x+2\pi).

Read More »1.6 Trigonometric Functions